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Abstract

In this paper, the behavior of two parallel symmetry interface cracks in magneto—electro—elastic materials under an anti-plane shear
stress loading is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral
equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equa-
tions, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. The relations among the
electric filed, the magnetic flux and the stress field are obtained. The shielding effect of two parallel interface cracks has been discussed.
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1. Introduction

The piezoelectric—piezomagnetic materials are a sort of
multi-functionally materials. The piezoelectric—-piezomag-
netic materials possess piezoelectric, piezomagnetic and
magneto-electric effects, thereby making the composite sen-
sitive to elastic, electric and magnetic fields. Consequently,
they are extensively used as electric packaging, sensors and
actuators, e.g., magnetic field probes, acoustic/ultrasonic
devices, hydrophones, and transducers with the responsibil-
ity of electro-magneto-mechanical energy conversion [1].
When subjected to mechanical, magnetic and electrical loads
in service, these magneto—electro—elastic composites can fail
prematurely due to some defects, e.g., cracks, holes, etc. aris-
ing during their manufacturing processes. Therefore, it is of
great importance to study the magneto—electro—elastic inter-
action and fracture behaviors of magneto—electro—elastic
materials [2-7]. Liu et al. [8]studied the generalized 2D prob-
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lem of an infinite magneto—electro—elastic plane with an
elliptical hole. Gao et al. [9,10] and Wang and Mai [11] also
studied the fracture problem of the piezoelectric—piezomag-
netic composites. The development of piezoelectric—piezo-
magnetic composites has its roots in the early work of Van
Suchtelen [12] who proposed that the combination of piezo-
electric—piezomagnetic phases may exhibit a new material
property—the magnetoelectric coupling effect. Since then,
there have not been many researchers studying magnetoelec-
tric coupling effect in BaTiO3;—CoFe,O4 composites, and
most research results published were obtained in recent years
[1-10,13-18]. The static fracture behavior of two parallel
symmetry interface cracks in the piezoelectric materials has
been investigated in Ref. [19]. However, to our knowledge,
the behavior of magneto—electro—elastic materials with two
parallel symmetry interface cracks subjected to anti-plane
shear stress loading has not been studied by using the
Schmidt method [20,21]. Thus, the present work is an
attempt to fill this information needed.

In this paper, the behavior of two parallel symmetry
interface cracks in magneto—electro—clastic material plane
subjected to anti-plane shear loading is investigated by use
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of the Schmidt method [20,21]. The Fourier transform is
applied and a mixed boundary value problem is reduced to
a pair of dual integral equations. To solve the dual integral
equations, the jumps of the displacements across the crack
surfaces are expanded in a series of Jacobi polynomials. This
process is quite different from those adopted in Refs. [2-11]
as mentioned above. The present problem is also quite differ-
ent from the problem in Ref. [19]. Only the electro—elastic
coupling effects were considered in Ref. [19]. Numerical solu-
tions are obtained for the stress. The shielding effect of two
parallel interface cracks has been discussed.

2. Formulation of the problem

Fig. 1 shows a piezoelectric—piczomagnetic material lay-
ered structure made by bonding together with two same
half planes. The piezoelectric—piezomagnetic material layer
is layer 2 of thickness £, with two parallel interface cracks
of length 2/ created. A Cartesian coordinate system (x, y) is
positioned as shown in Fig. 1. The piezoelectric—piezomag-
netic boundary-value problem for anti-plane shear is con-
siderably simplified if we consider only the out-of-plane
displacement, the in-plane electric fields and the in-plane
magnetic fields. As discussed in Soh et al.’s [22] works,
since no opening displacement exists for the present anti-
plane problem, the crack surfaces can be assumed to be
in perfect contact. Accordingly, the electric potential, the
magnetic potential, the normal electric displacement and
the normal magnetic flux are assumed to be continuous
across the crack surfaces. Here, the standard superposition
technique is used and only the perturbation fields are con-
sidered in the present paper. So the boundary conditions of
the present problem are

’L' (xh*)—‘c Vo6, h) = —19, |x| <1
w (e, k) =w® (x,h7), |x|>1

T§§>(x70+) =1 (x,07) = —10, |x[<! ()
w® (x,01) =w® (x,07), |x|>1
OV (e, h ") = ¢® (x,h7), Dil (x,h") = <2>()c h7), x| <oco
{lp(1>(x,h+):1//(2)(x,h‘), B (x,h")=BP (x,h"), |x| < oo
(2)
x| < o0

¢ (x,0) =9 (x,07), DP(x,0") =D (x,07),
Y (x,07) =y (x,07), BP(x,07)=BY(x,07), |x| <oo
(3)
=0 for (> +)*)"* -0
4)

where rﬁ?, D,({i) and B,(f) (k=x,y, i=1,2,3) are the anti-
plane shear stress, in-plane electric displacement and in-
plane magnetic flux, respectively. w'?, ¢? and ¢ are the
mechanical displacement, the electric potential and the
magnetic potential. Also note that all quantities with super-
script (i = 1,2, 3) refer to the upper half plane 1, the layer
2 and the lower half plane 3 as shown in Fig. 1, respec-
tively. In this paper, we only consider that 7, is positive.

wh (x,y) =w (x,y) =w (x,y)

v

3

Fig. 1. Two parallel symmetry interface cracks in magneto—electro—elastic
materials.

It is assumed that the magneto—electro—elastic material is
transversely isotropic. So the constitutive equations for
the mode III crack in the magneto—electro—clastic material
can be expressed as

o) = il + )+ a0
(i) (1), (@) (1) 4 (0) (1) ,7.(1)
Dy =e;swy — Slld)k _dn‘pk
Bl(cl) _ q(l)w(l) dﬁ’fqﬁ i) ,u“lﬂ
()

15Wk
where c,; is shear modulus, e15 is piezoelectric coefficient,

¢\ is dielectric parameter, q<15> is plezomagnetlc coefficient,

(k=x,9,i=1,2,3) (5
(k:xayv i:172a3) (6)
(k=x,y,i=1,2,3) (7)

d\) is electromagnetic coefficient, u|] is magnetic perme-

o 1 3 1 3 1 3 1 3
ability, where cfm) = cfm), e§5> = e§5>, 82 1> = 851), 6]55) = ng),

1 3 1 3
dil) = d(n) and #gl) = ﬂ(n)-
The anti-plane governing equations are

caViw? + IV + gV =0 (i=1,2,3)  (8)
e VWl — IV —aflviy =0 (i=1,2,3)  (9)
sV —di} VU — iV =0 (i=1,2,3)  (10)
where V? = 8%*/0x? + 0°/0y? is the two-dimensional Laplace

operator. Because of the assumed symmetry in geometry
and loading, it is sufficient to consider only the problem
for 0 < x<oo, —00 < y <oo. A Fourier transform is ap-
plied to Egs. (8)—(10). It is assumed that the solutions are

W(x,y) =2 [ A1 (s)e™ cos(sx)ds
oV (x,y) = "—‘w(l)(x y)+2 [ Bi(s)e ¥ cos(sx)ds (y = h)
Y (x,p) = 2w (x,y) +2 [ C(s)e™ cos(sx)ds
(11)
wi (x,y) =2 fo [y (s)e™ +Bz(s)e‘}}cos(sx)d
¢ (x,) = Lw@(x,y) +2 [*[Cals
+D2( )e¥] cos(sx)ds 0<y<h)
lp(3) (x,y) = 115W (x )+ fo [Ex(s
+F2( )e¥] cos(sx)ds
(12)

2 Jo As(s)e” cos(sx)ds
o () = a_lWG)(x ¥)+2 [ Bs(s)e? cos(sx)ds (y < 0)
PO p) = 2wO(xp) +7 fi7 Cs(s)e” cos(sx)ds

(13)
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n 12 (1 n ( 1
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where a) = ¢ es s> @2 ={q1s

(1) 1 M _ 2@ (2)2 _ @ 2 (2) (2

gy —djjes, ay=g Wy —dy, as=wyes —djqys,
2) (2 2) (2

as =qsey —diVel). Ais), Bi(s), Ci(s), Aas), Bas),

CZ(S)a DZ(S)7 EZ(S)a FZ(S)a A3(S)> B3(S) and C3(S) are
unknown functions.
So from Egs. (5)—(7), we have

(
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ae a
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ao ao
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2 [o¢]
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(2 (2)
ase a
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as as
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+q5Ex(s) | e — Caq + =245
as as

X By(s) + €3 Da(s) + q{7 Fa(s)

e”} cos(sx)ds  (17)

2 o0
DR =7 [ Cas) + i Exloe

— [#7Da(s) + dfT Fa(s)]e”} cos(sx)ds (18)
2 [ s

BYwy) =2 [ s + i Bl
— [d7Da(s) + w7 Fa(s)]e”} cos(sx)ds (19)
> a4

©) _z () 1€1s | @45

o <x,y)—n/0 s <+ et KL

+ 6315)33 (s) + q(lls) Cs(s) | e cos(sx)ds (20)

2 o0
D) = =2 [ sl Ba(s) 4 Calo)e cos(snds (21)
0

BY(x,y) :—% / Sl Ba(s) + i) Ca(s)le cos(sx)ds  (22)
0

To solve the problem, the jumps of the displacements
across the crack surfaces are defined as follows:

fix) =w (x, i) —w® (x,h7) (23)
fx) = w07 = wI(x,07) (24)
Substituting Eqgs. (11)—(13) into Eqgs. (23) and (24), apply-

ing the Fourier transform and the boundary conditions
(2) and (3), it can be obtained

Ai(s)e™ — A(s)e™ — Ba(s)e” = £(s),
As(s) + Ba(s) — As(s) = f,(s) (25)
%m@wﬂ—%mmkﬂ+&@wﬂ

4 Bi(s)e™ — Ca(s)e™ — Dy(s)e” = 0 (26)
o, [2(5) + Bals)] =2 L As(s) + Cals) + Dals) — Bafs) = 0
@7
W) = (e + Ba(s)e]
+ Ci(s)e ™ — Ex(s)e™ — Fy(s)e” =0 (28)
o (5) - Ba(o)] = 2 A5(5) - Ex(s) + Fals) = C(s) = 0
(29)

A superposed bar indicates the Fourier transform through-
out the paper. Substituting Egs. (14)—(22) into Eqgs. (1)—(3),
it can be obtained
[0 (s) + €l Bi(5) + 13 Ci (s)] e~

— [0942(5) + €7 Cas) + ¢\ 3 Eals) e

+ [09B,(s) + 2Dy (s) + ¢\ Fa(s)]e = 0 (30)
00aa(s) + €l Ca(s) + ¢iFEals) = [07Bals) + €[y Das)

+ 413 Fa(s)] + [0 (s) + €l Bs(5) + 415 C3(s)] = 0 (31)
— [¢1Bi(s) + di) Ci(9)]e™ + [¢7 Cals) + di] Ea(s)]e ™"

— [ Da(s) + di)Fa(s)le” = 0 (32)
— &7 Cals) = diV Ea(s) + &7 Da(s) + i Fa(s) — e Ba(s)

—d{)Cs(s5) =0 (33)
[=d}YBi(s) — u) C1(s))e™ + [T Cals) + pi} Ea(s)]e ™

— [di)Ds(s) + i Fa(s)]e” = 0 (34)
—d}/Cals) = w1 Exls) + dyi Da(s) + i) Fa(s)] — di)'Bs(s)

— 1) Cs(s) =0 (35)

1 2
a2q<15) “5‘1(15)

where oV = cf&) + @ + 205 52 — cfé) + @ + =L
By solving twelveOEqs. (025)—(35) with twelve unknown
functions A4,(s), Bi(s), Ci(s), Aa(s), Bafs), Ca(s), Dafs),
E5(s), Fs(s), As(s), Bs(s) and Cs(s) and applying the bound-
ary conditions (1)—(2) to the results, it can be obtained

% /Ooofl (s)cos(sx)ds =0, x>1 (36)
% /0 f(s)cos(sx)ds =0, x>1 (37)
2 o0

p / slg1()/1(s) + g2(s) /5 (s)] cos(sx)ds = —1q,

0
0<x< 1 (38)

% /Ooos[gz(s)fl (s) + g1 (5)f5(s)] cos(sx)ds = —1o,

Y
0<x< ! (39)
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From Egs. (36)—(39), it can be obtained
[1(8) = f2(s) = fi(x) = folx), TV, h) =2 (x, h)

= r)f) (x,0) = ‘ES) (x,0) (40)
1 _ ne _ ne _ B
D;)(x,h)—D£)(X7h)—D;)(x70)—D§,>(x70) (41)
1 _ p2 _ p2 _ p@3
BV (x,h) = B (x,h) = BY (x,0) = B (x,0) (42)

where g(s) and g»(s) is a known function (see Appendix A).
lim,_ ,.g1(s) = f; and lim,_, . g-(s) =0, where f; is a con-
stant that depends on the properties of the materials (see
Appendix A). When the properties of the upper and the
lower half planes is the same, f§; = —cf&)/Z. To determine

the unknown functions £, (s) and f,(s), the above two pairs
of dual integral equations (36)—(39) must be solved.

3. Solution of the dual integral equations

From the natural property of the displacement along the
crack line, it can be obtained that the jumps of the displace-
ments across the crack surface are a finite, continuous and
differentiable function. Hence, the jumps of the displace-
ments across the crack surfaces can be represented by the
following series:

i) = = nrS(5) (1-%)

n=1

o

for 0 <x <!

(43)
for x > 1
(44)

where b, are unknown coefficients to be determined and
PW/21/2)(x) is a Jacobi polynomial [23]. The Fourier trans-
form of Eqgs. (43) and (44) is [24]

]] (S) = anGnévjznfl(Sl)
n=1

N <x> :fZ(x) = W(l)(xv h+> - W(Z)(x’ hi) =0,

rn—-1% #3)
— /(1) A Y
where I'(x) and J,(x) are the Gamma and Bessel functions,

respectively.

Substituting Eq. (45) into Egs. (36)—(39), respectively. It
can be shown that Egs. (36) and (37) are automatically sat-
isfied. After integration with respect to x in [0, x], Egs. (38)
and (39) reduce to
E Z bnGn / ; [gl (S) + gZ(S)]J2’1—1 (SI) SIH(Sx)dS = —ToX

n=1 0

(46)
From the relationship [23]

sin[nsin~' (b/a)]

< 1 " a>b
/0 EJ" (sa) sin(bs)ds = @ sin(n/2) .
nb+Vb* — "

(47)

the semi-infinite integral in Eq. (46) can be modified as

/000 %[gl (s) + g5(8)]J 2,1 (s1) sin(sx)ds
gy )

n /0 h é[gl (5) + €2(5) — PilJaws (s sin(sx)ds  (48)

It can be seen that the integrands in the right end of Eq.
(48) tend rapidly to zero. Thus the semi-infinite integrals
in Eq. (48) can be numerical evaluated easily. Eq. (46)
can now be solved for the coefficients b, by the Schmidt
method [20]. For brevity, Eq. (46) can be rewritten as

0<x< ! (49)

where E,(x) and U(x) are known functions and the coeffi-
cients b, are to be determined. A set of functions P,(x)
which satisfy the orthogonality condition

1 !
/ P(x)P,(x)dx = N6y, N, = / P2(x)dx (50)
0 0
can be constructed from the function, E,(x), such that
e Min
Pu) = 3 T Ei) (s1)

i=1

where Mj; is the cofactor of the element d; of D,, which is
defined as

d117d127d137 e adln
d217d225d237 s 5d2n
d317d327d337 cee 7d3n

_drzl7d7121dn37 s ;dnn

(52)
Using Egs. (49)—(52), we obtain
=~ M, . 1 [
b, = ;qj ij» with ¢; = ﬁ] /0 U(x)P;(x)dx (53)

4. Intensity factors

The coefficients b,, are known, so that the entire pertur-
bation stress field, the perturbation electric displacement
and the magnetic flux can be obtained. However, in frac-
ture mechanics, it is of importance to determine the pertur-
bation stress 7,. and the perturbation electric displacement
D, in the vicinity of the crack tips. In the case of the present
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study, <), @), <0, DIV, DB, D®, BY, B and B

the crack line can be expressed respectively as

along

D (x,h) = 12, h) = 12 (x,0) = 1P (x,0) = 1,.

:—anG / T121(5) + 25(5)an 1 (1) cos(xs)ds  (54)

1 _ (2) _ (2 _ 3 —
DY (x,h) = D) (x,h) = D\ (x,0) = DY (x,0) = D,
2 o0 o0
=235, / (5901 (s1) cos(xs)ds (55)
n=1 0
1 _ 2 _ 2 _ 3 _
B; J(x,h) = B( )(x,h) = B(A )(x,0) = BE, )(x,0) =B
2
_2 Z biG, / 24(5)an 1 (s1) cos(xs)ds (56)

where g5(s) and g4(s) are known functions (see Appendix A).
lim, . ogs(s) = fo. lim, .cga(s) = Bz, where B, and fs are
two constants which depend on the properties of the mate-
rials (see Appendix A). When the properties of the upper

and the lower half planes is the same, f, = —e&? /2 and
b5 = —q15 /2 From the relationship [23]
cos[nsin~' (b/a)] asb
0 / 2
/ Tu(sa)cos(bs)ds = aza;sbin(nn/Z)
0 b>a

VP @bt Ve —a"
(57)
the singular parts of the stress field, the electric displace-

ment and the magnetic flux can be expressed respectively
as follows (/< x):

C2B
== ;bnGan(x) (58)
2B N

D==2 ; b,G,H ,(x) (59)
_ 25§

B= 73 ; b,G,H,(x) (60)

(71>l1—1127171
A /“,627/2[)6Jr1 /X2,[2]2”*1

We obtain the stress intensity factor K as
= lim \/2(x - ]) _ b Zb ) (61)
2n —

x—It
We obtain the electric displacement intensity factor K as

where H,(x) = —

4B 3) _ B
D=- Zb 2n — 22! B 5K
(62)

KP = lim /2(x = 1) -

x—l

We obtain the magnetic flux intensity factor K% as

4ﬁ3 1 ﬁ3
B [ — E 2 ]K

K% = lim \/2(x — [) -

x—11

5. Numerical calculations and discussion

Adopting the first 10 terms in the infinite series (49), we
followed the Schmidt procedure. From the literature
[25,26], it can be seen that the Schmidt method performs
satisfactorily if the first ten terms of the infinite series
(49) are retained. The precision of present solution can sat-
isfy the demands of the practical problem. The constants
[3,17,18] of materials-1 are assumed to be that cf&) =
44.0 (GPa), ¢l =5.8(C/m?), &\ =5.64 x 107 (C*/Nm?),
q\¥ =275.0 (N/Am), d\) =0.005x 107 (Ns/VC), u) =
—297.0x 10°° (Ns?/ C2) The constants of materlals 2 are
assumed to be that cﬁ =54, O(GPa) e15 =7.8(C/m?),
&t =3 64 10° P (C?/Nm2), ¢\¥ =175. 0(N/Am), d¥ =
0.008 x 10~ (Ns/VC), u{¥ = —197.0 x 10~° (Ns2/C?). The
results of the present paper are shown in Figs. 2-4. From
the results, the following observations are very significant:

0.96 -

£ 0.88-

0.80 1

hil

Fig. 2. The stress intensity factor versus A/l (material-1/material-2/
material-1).

3.2 1 1 1 1 1 1 1

3.0 1

KP 1 1\ (x10%)
N
(0]

2.6 1

2.4 T T T T T T T

Fig. 3. The electric displacement intensity factor versus 4/l (material-1/
material-2/material-1).
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10.0 1 1 1 1 1 1 1

KB/t NI (x10')
® © o
[6)] o [§)]

*®
=}
!

7.5 T T T T T T T
hil

Fig. 4. The magnetic flux intensity factor versus /// (material-1/material-
2/material-1).

(1) The stress, the electric displacement and the magnetic
flux intensity factors not only depend on the crack
length and the distance between two interface cracks,
but also on the properties of the materials and the
electro-magneto—elastic coupling effects are obtained
as shown in Egs. (61)—(63). In comparison with the
results of Ref. [19], the electro-magneto—elastic cou-
pling effects are considered in the present paper.
However, in Ref. [19], only the electro—¢lastic cou-
pling effects are considered. Certainly, some conclu-
sions are similar with each other in the present
paper and in Ref. [19].

(ii) The stress, the electric displacement and the magnetic
flux intensity factors increases as the distance between
two parallel interfacial cracks increases as shown in
Figs. 2-4. This phenomenon is called crack shielding
effect as discussed in Ratwani and Gupta’s paper [27].
However, the shield effects are very small for /> 4.0.

(iii) For A/l> 4.0, the stress intensity factors tend to a
unit, which is the same as the results of a crack in
an infinite plane for the anti-plane shear problem. It
can be obtained that the interactions of two parallel
interface cracks are very small for 4/l > 4.0.

(iv) The variations of K, K and K” with //I have a same
tendency as shown in Figs. 2-4. However, the ampli-
tude values of K /t0v/1, K? /10v/1 and K® /ty\/1 are dif-
ferent from each other. The amplitude values of
KP/t9/1 and K®/7¢\/I are very small as shown in
Figs. 3 and 4.
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Appendix A

1 0 O -1 0 0
=l 'O ma=| e N

% 0 1 —§ 0 -1
Xs] = [Xa], [Xo]=-[X3], [Xs]=—[X3],

o el s
[Xe]=—-[X1], [X7]=1] 0 78211) fd(lll) ;
0 ) -

) g

wl=| 0 @ 4 |, =il
0 dy Wy
[Xio] = —[Xs], [Xul=[Xs], [Xn]=[X7],
X3 = [Xs], [Xia] = —[Xs],
[X15] = [Xa] — [X1][X7] ' [Xs),
X 16] = [X3] — [X1][X7] ' [Xo],
X17] = [Xa] — [XellX12] ' [X10],
[X1s] = [Xs] — [XellX 1] ' [X01],
X1o] = [X17] — szSh[Xls][Xle]fl[Xls]y
[X20] = [X1o] ' [Xis][X16) ', [Xu] = [Xm]fl[Xls][Xw]A,
2] = [X16) ™ X 1s][X 1]~ [X 18] [X16]
[Xo3] = —e [X13][X20] + "X 14][X16] " + € [X 4] [X 2]
[011(s)  O1a(s)  O13(s) ]
= | dx (S) 522(S) 523(3) s
53 (S) 5;2(5') 533(S)

X4] = [X13][X10) " — € 2" [X 1] [X o]

Cogi(s)  ona(s)  oga(s)
= [o(s) on(s) ops(s)
Losi(s)  oa(s)  osa(s)
g1(s) = aui(s), & (s) = ouls),
23(s) = 0a1(s) +oa1(s),  gals) = 031(s) + 31 (s)
By * *
XialXu] =By * =
By = =
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